Math 4 Honors Lesson 8-4: The Fundamental Theorem of Calculus

Name	
Date	

Learning Goals:

- I can use the General Power Rule for Integration to find the antiderivative of a function.
- I can use the Fundamental Theorem of Calculus to evaluate a definite integral.
- I can find the area between two curves using integration.

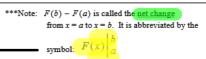
Differential calculus was primarily concerned with the slope of a line tangent to a curve at a given point. This was helpful in a variety of problems including computing instantaneous velocity and acceleration. Integral calculus is concerned with the area between that curve and the x-axis. When you differentiate an equation you get the slope. When you integrate you get the area between equation and the x-axis. Up until this point, we have been approximating the area under irregular curves using Riemann Sums. Next, we will look at an algebraic method to help find the exact values.

The Fundamental Theorem of Calculus:

Must use "F" not "f"
$$(x) \text{ be an } antiderivative \text{ of } f(x).$$

Suppose that f(x) is continuous on the interval $a \le x \le b$, and let F(x) be an <u>antiderivative</u> of f(x).

Then,
$$\int_{a}^{b} f(x)dx = F(b) - F(a).$$
***Note: $F(b) - F(a)$ is called the net change from $x = a$ to $x = b$. It is abbreviated by the symbol: $F(x) = a$



Antiderivatives:

How do we find the antiderivative of a function? Study the next two examples of indefinite integrals & see if you can determine the process.

Solution:

Step 1: Given function

$$f(x) = 3x^2 + 7x$$

 $\int f(x) dx = \int 3x^2 + 7x dx$

Step 2: Separate the integral function

$$\int (3x^2 + 7x) \, dx = \int 3x^2 \, dx + \int 7x \, dx$$

Step 3: Integrate each function with respect to 'x',

$$\int (3x^2 + 7x) dx = \frac{3x^3}{3} + \frac{7x^2}{2} + C$$
$$= x^3 + \frac{7x^2}{2} + C$$

How would you generalize the process?

Example 1: Find antiderivative for the function, $f(x) = 3x^2 + 7x$. **Example 2:** Find antiderivative for the function, $f(x) = \frac{2}{x^7}$

Solution:

Step 1: Given function

$$f(x) = \frac{2}{x7}$$

$$\int f(x) dx = \int \frac{2}{x7} dx$$

Step 2: Integrate the function $\frac{2}{\pi^7}$ with respect to 'x',

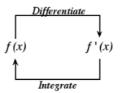
$$\int \frac{2}{x^7} dx = \int 2x^7 dx$$
$$= 2\left(\frac{x^{-7+1}}{-7+1}\right)$$
$$= 2\left(\frac{x^{-6}}{-6}\right) + C$$
$$= -\frac{1}{3x^6} + C$$

What's up with "C"?

How can you determine if you have found the correct antiderivative?

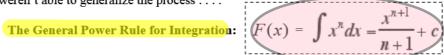
OVER →

Differentiation and integration are inverses of each other.



Page 2

In case you weren't able to generalize the process



Examples: Integrate the functions with respect to x. In other words, find F(x)***Don't forget the "C"!

1.
$$f(x) = 4x^2 + 2x - 3$$

2.
$$f(x) = x^4 + 3x - 9$$

$$F(x) = 4\left(\frac{x^{3}}{3}\right) + \lambda\left(\frac{x^{2}}{3}\right) - 3x + C$$

$$= \frac{4x^{3}}{3} + x^{2} - 3x + C$$

$$F(x) = \frac{x^{5}}{5} + \frac{3}{2}x^{2} - 9x + C$$

$$F(x) = \frac{x^5}{5} + \frac{3}{2}x^2 - 9x + c$$

$$3. \int x^8 + x^{-8} dx$$

$$4. \int (5x^3 - 10x^{-6} + 4) \, dx$$

$$F(x) = \frac{x^9}{7} + \frac{x^{-7}}{77} + 0$$

$$= \frac{x^9}{9} - \frac{1}{7x^7} + 0$$

$$F(x) = \frac{x^9}{9} + \frac{x^{-7}}{-7} + c \qquad F(x) = 5(\frac{x^9}{4}) - 10(\frac{x^{-5}}{-5}) + 4x + c$$

$$= \frac{x^9}{9} - \frac{1}{7x^7} + c \qquad = \frac{5x^9}{9} + \frac{2}{x^5} + 4x + c$$

5.
$$\int 3\sqrt[3]{x^3} + \frac{7}{x^5} + \frac{1}{6\sqrt{x}} dx$$

6.
$$\int dx$$

$$\int (3x^{\frac{7}{4}} + 7x^{-5} + \frac{1}{6}x^{\frac{7}{4}}) dx$$

$$F(x) = 3\left(\frac{x^{\frac{7}{4}}}{74}\right) + 7\left(\frac{x^{-\frac{7}{4}}}{-4}\right) + \frac{1}{6}\left(\frac{x^{\frac{7}{4}}}{\frac{7}{4}}\right) + C$$

$$= \frac{12}{7}x^{\frac{7}{4}} - \frac{7}{4x^{\frac{7}{4}}} + \frac{1}{3}\sqrt{x} + C$$

$$F(x) = x + c$$

Page 3

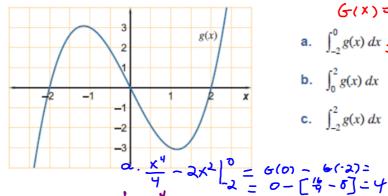
Some other special rules for integration:
$$\int \sin x \, dx = -\cos x + c \qquad \qquad \int \cos x \, dx = \sin x + c$$

$$\int e^x \, dx = e^x + c \qquad \qquad \int a^x \, dx = \frac{a^x}{\ln a} + c \qquad \qquad \int \frac{1}{x} dx = \int x^{-1} \, dx = \ln |x| + c$$

Examples: Evaluate the following definite integrals.

 Revisit problem #5 from Lesson 8-3 & use the FTC to answer parts a, b, & c. Compare these results to your original estimates.

The next diagram shows a graph of the function $g(x) = x^3 - 4x$.

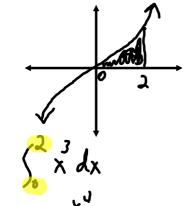


- $G(x) = \frac{x^{1}}{4} 4\left(\frac{x^{2}}{2}\right) + C$
- a. $\int_{-2}^{0} g(x) dx = \frac{x^{4}}{u} \lambda x^{2} + c$
- **b**. $\int_0^2 g(x) dx$
- c. $\int_{-2}^{2} g(x) dx$

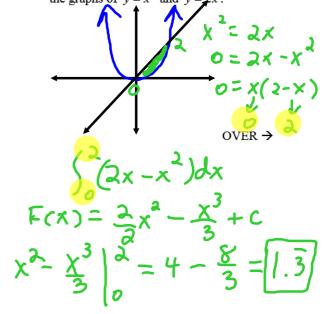
b. $\frac{x^4}{4} - 2x^2 \Big|_{0}^{2} = G(2) - G(0) = \frac{14}{9} - 8 \Big|_{0}^{2} = G(2) - G(-2) = \frac{14}{9} - 8 \Big|_{0}^{2} = G(2) - G(-2) = \frac{14}{9} - \frac{14}{9} - \frac{14}{9} - \frac{14}{9} = 0$ 3. $\int \sin(x) dx$

 $-\cos x \Big|_{0}^{2} = -\cos x - (-\cos (0))$ = -(-1) + 1 = 2

4. Find the area under the curve $y = x^3$ from x = 0 to x = 2.



 $F(x) = \frac{x^{3}}{4} + C$ x 12 = 2 - 0 = [4] 5. Find the area bounded by the graphs of $y = x^2$ and y = 2x.



Page 4

HOMEWORK. Please show all work on another piece of paper.

Evaluate the following.

1.
$$\int_{-1}^{5} \left(\frac{2}{3} x + 1 \right) dx$$

2.
$$\int_{-4}^{7} 5 dx$$

$$3. \int_{0}^{9} 2x dx$$

$$4. \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} (\cos x) dx$$

5.
$$\int_{-3}^{8} (3x^2 + 4x + 1) dx$$
 6. $\int_{0}^{5} e^x dx$

$$6. \int_{0}^{5} e^{x} dx$$

7.
$$\int_{1}^{8} 8^{x} dx$$

$$8. \quad \int\limits_{1}^{7} \left(x^2 + 3x - 2\right) dx$$

8.
$$\int_{0}^{7} (x^2 + 3x - 2) dx$$
 9. $\int_{1}^{2} (\frac{4}{x^3} + \sqrt[3]{x^2}) dx$

Draw sketches for each of the following. Then solve.

10. Find the area under the curve $y = x^2 + 1$ from x = 1 to x = 3.

11. Find the area bounded by $y = x^2 - 1$ and the x-axis.

12. Find the area bounded by the graph of $y = x^3$, the x-axis, and the lines x = -1 and x = 2.

13. Find the area of the region bounded by $y = x^3 - 4x$ and y = 0.

14. Find the area of the region bounded by $y = x^2 - 4$ and $y = 4 - x^2$.

15. Find the area of the region bounded by $y = x^3 - 1$, y = 0, x = 0, and x = 2.

16. Find the area of the region bounded by $y = x^2$ and y = 4.

17. Find the area under the curve $y = \sqrt{x}$ from x = 0 to x = 4.

18. Find the area of the region bounded by $y = \sqrt{x}$, x = 0, and y = 2.

Lesson 8-4.notebook May 03, 2016

ANSWERS

1. 14

2. 55

3. 81

4. 2

5. 660

6. ≈ 147.41

7. \approx 8,066,165.681

8. ≈ 173.83

9. ≈ 2.805

10. 32/3

11. 4/3

12. 17/4

13. 8

14. 64/3

15. 7/2

16. 32/3

17. 16/3

18. 8/3

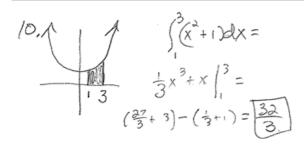
Lesson 8-4 Homework

7.
$$F(x) = \frac{2}{3} \cdot x^{2} + x$$

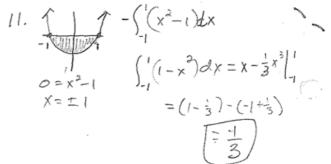
$$= \frac{x^{3}}{3} + x + c$$

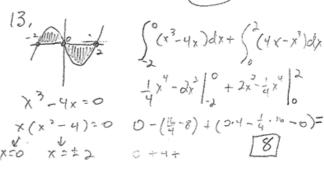
$$= \frac{x^{3}}{3} + x +$$

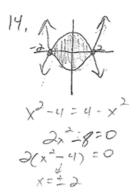
Lesson 8-4.notebook May 03, 2016



$$\frac{12}{\sqrt{2}} - \int_{-1}^{0} x^{3} dx + \int_{0}^{2} x^{3} dx = \frac{1}{\sqrt{2}} + \int_{0}^{2} x^{3} dx = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{17}{\sqrt{2}}$$







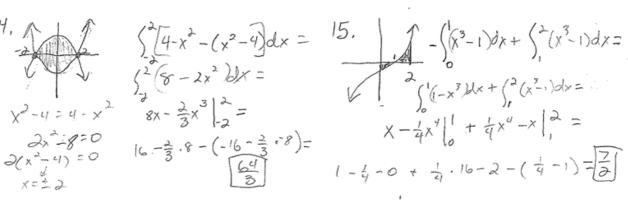
$$\int_{-2}^{2} (4-x^{2}-(x^{2}-4)) dx =$$

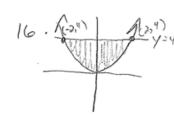
$$\int_{-2}^{2} (8-2x^{2}) dx =$$

$$8x - \frac{2}{3}x^{3}|_{-2}^{2} =$$

$$16 - \frac{2}{3} \cdot 8 - (-16 - \frac{2}{3} \cdot 8) =$$

$$64 = 3$$





$$\frac{\int_{-2}^{2} x^{4}}{y^{2}y} \int_{-2}^{2} (1-x^{2}) dx = \frac{1}{3} \left[\frac{1}{3} - \frac{1}{3} \right]_{-2}^{2} = \frac{1}{3} \left[\frac{3}{3} - \frac{1}{3} - \frac{1}{3} \right]_{-2}^{2} = \frac{1}{3} \left[\frac{3}{3} - \frac{1}{3} - \frac{1}{3} - \frac{1}{3} \right]_{-2}^{2} = \frac{1}{3} \left[\frac{3}{3} - \frac{1}{3} - \frac{$$

